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The effects of hyperbolic heat conduction 
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Using infrared detectors, Zehnder and Rosakls (1991, J Mech Phys Sohds 39(3), 385), Zehnder and Kalhvayahl (1991, 
SPIE ISS4A, 48) and Mason and Rosakls (1992, SN Report 92-2), have recorded the temperature field around a dynamically 
propagating crack tip travelling at constant velocity m several metals At the same time, Tzou (1990a, J Heat Transfer 112, 
21, 1990b, Inst Heat Mass Transfer 33(5), 877) has suggested that the temperature field around a propagating crack tip 
might exhibit some of the charactensucs of hyperbohc heat conductmn In this paper a corrected solution of the hyperbohc 
heat conduction equation for a travelling point source ~s derwed Then an experimental estimate of the active plastic zone 
(heat generating zone) at a crack tip is used for various experimental conditions to examine the possible effects of hyperbohc 
heat conductmn around a propagating crack tip Finally, using the actual experimental con&tmns of Zehnder and Rosakis 
(1991), Zehnder and Kalhvayahl (1991) and Mason and Rosakm (1992) tt is shown that no effects of hyperbohc heat 
conduction are observed around a propagating crack tip It is seen that, due to admbaUc con&tlons at the crack tip during 
these experiments, the solution of the hyperbohc heat equation is m&stmgmshable from the solution of the parabolic heat 
conductmn equation for crack propagatmn in steel 

Notation 

q heat  flux vector 
k thermal conductwlty 
T tempera ture  rise 
S heat source function 
p density 
cp heat capacity 
Ot k / p c p  

v thermal wave speed 
a crack tip velocity 
z stationary coordinates system 
~¢ coordinates translating with the crack tip 
M thermal Mach number,  a / v  

K a/Za~/I 1 - M 2 [ 
f aspect ratio of the heat source zone 

Correspondence to Dr A J Rosakls, Graduate Aeronautical 
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8 size of  heat source zone 
Q magnitude of heat  source zone 
x normalized coordinates translating with the 

crack tip 
~b a 6 / 2 a  
0 pcpT /Qt~  

I. Introduction 

It  IS understood that the classical, or parabolic, 
heat conduction equation has an inherent pathol- 
ogy That  is, when a point source is introduced 
Into a conducting medium, the parabolic heat 
conduction equation predicts that its presence is 
Instantaneously felt throughout the medium Of- 
ten this pathology is referred to as " the  infinite 
speed of heat propagation,"  and it has been ad- 
dressed by Morse and Feshbach (1953) through 
the Introduction of a new heat flux law Usually, 
the heat flux, q, is related to the gradient of 
temperature  by Fourier 's  law, 
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q = - k  VT 

When this relation is combined with the expres- 
sion for the contmulty of energy, 

- V  q + S = p c p T ,  

where the dot refers to ttme dtfferenttatton, the 
parabohc heat conductton equatton results, 

1 
a V 2 T  - T -  - - S  (1 1) 

pcp 

(In this paper, the temperature, T, ts tmphcitly 
taken as the change m temperature above ambi- 
ent, T = T a c t u a l -  Z a m b l e n  t ) If, mstead of Founer 's  
law, a new heat flux law ts used, 

O~ 

--12 q + q = - k  VT, 

then through similar mampulatlons the "hyper- 
bohc" heat conduction equation results, 

° 1 ( ° ) 
a V 2 T - - - v T - r  - - -  S + T s S  ( 1 2 )  

t'" pCp 

The introduction of the new heat conduction law 
has been justified by several authors (for a rewew 
see Tzou (1990a, 1990b)) and some experimental 
work has shown that this different heat conduc- 
tion equation ts more appropriate at large dis- 
tances from a point source or at very short times 
after the lntroductton of a pomt source (Kamin- 
ski, 1990) An esttmate for the speed of heat 
propagatton tn matertals, t,, may be found 
(Baumelster and Hamlll, 1969) and for steel this 
estimate predicts a speed of heat propagation on 
the order of 103 m / s  

Zehnder and Rosakis (1991) and Mason and 
Rosakls (1992) have measured the temperature at 
the t~p of a dynamtcally propagating crack for 
crack tip velocities ranging from 600 to 900 m / s  
in 4340 steel The temperature fields show a 
strong difference in their geometric nature, see 
F~g 1, and, since these velocities are comparable 
to the esttmate for the wave speed of heat propa- 
gatton, it ts suggested that this difference may be 
due to hyperbolic heat conduction In order to 
determme whether hyperbohc heat conduction is 
active m these experiments, it ts the purpose of 

S~¢~,m~n3R9 
1 r 

• / / . 
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F i g  1 T e m p e r a t u r e  f i e l d s  a r o u n d  a c r a c k  p r o p a g a t i n g  i n  

od-quenched 4340 steel at two different velocmes The maxi- 
mum temperature at higher velocltmS is 450°C (Zehnder and 
Rosak,s, 1991) whde the max,mum temperature at 600 m/s ts 
300°C (Mason and Rosak,s, 1992) 

-i 
1 

zo 

this investigation to produce theoretical tempera- 
ture fields for the problem of a crack propagation 
m a hyperbolically conducting metal It ts funda- 
mentally important to note that the propagatton 
of a crack produces plastic deformation at the 
crack tip and that the plastic work generated 
during this deformation is mostly transformed 
into heat Therefore, the problem of calculating 
the temperature field around a propagating crack 
tip lS more correctly stated as the problem of 
calculating the temperature field around a propa- 
gating heat source zone with careful attentton 
paid to the boundary conditions at the crack 
faces 
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Several investigations of the temperature field 
around a propagating crack have been reported 
for parabolic heat conduction (For a complete 
review of this field of work see Mason and Rosakls 
(1992)) The most pertinent here is the work of 
Weichert and Schonert (1978) These authors nu- 
merically calculated the temperature  fields 
around propagating heat source zones by Inte- 
grating the solution of the parabolic heat conduc- 
tion equation for a travelling point source over a 
rectangular heat source zone of constant magni- 
tude A similar methodology is used here The 
dynamic crack is modelled two-dimensionally by a 
heat source zone, the crack tip plastic zone, prop- 
agatlng at a constant velocity with a trailing line 
of insulated crack faces (The velocity is a signifi- 
cant fraction of the shear wave speed in the 
material making it a dynamic crack ) It is as- 
sumed that the crack faces do not open It should 
be noted that in all theoretical investigations of 
the temperature field around a propagating crack 
tip the assumptions made about the plastic work 
zone and, consequently, the heat source zone 
have proven to be extremely important in the 
calculation of maximum temperature Due to the 
complexity of the three-dimensional deformation 
where temperature measurements are performed 
(at the surface of the specimen), it is difficult to 
accurately describe the plastic work zone in closed 
form and most assumptions result in an oversim- 
plification of the experimental problem Conse- 
quently, in this work the shape of the plastic work 
zone is estimated from the experiments of Zehn- 
der and Rosakis (1991) and Mason and Rosakls 
(1992) directly, eliminating over-simplification 
and, thus, more closely approximating the experi- 
mental data The effects of shear lip formation, 
reverse plasticity upon material unloading, e t ,  
are implicitly accounted for In the experimental 
approximation of the actwe plastic zone 

2. Theoretical development 

First it is necessary to find the solution of the 
hyperbolic heat conduction equation for a point 
source travelling at constant velocity Although 
earlier attempts to provide solutions of Eq (1 2) 

for a travelling point source exist (Tzou, 1989a, 
1989b), the solution given here includes some 
corrections that significantly alter the behavior of 
the solution 

We are interested in solving the equation, 

1 1 

1 ( S ( z  I at, z2) 
pCpOt 

° ) 
-1- 7 5 ( Z  1 -- a t ,  Z2) , ( 2 1 )  

for a point source travelling at a constant velocity, 
a, in the z I direction, i e ,  

S( z~ - a t ,  z2)=(~(Z  1 - a t ) 6 (  z2) 

Substituting for S(z 1 - at, z2), Eq (2 1) becomes 

1 1 
- - T  V 2 T - 7 2 T -  a 

_ 1 ( 6 ( z l _ a t ) 6 ( z 2 )  
pcva 

a a 6 ( z l - a t  ) ) 
+ ~ 0 t  a (z2)  (2 2) 

It may be shown that the solution of this equation 
depends upon M 2, where M = a le ,  and that this 
dependence may be divided into three regimes, 
M 2 < 1, M 2 = 1 and M 2 > 1 The former and 
latter cases will be addressed here 

2 1 For the case M 2 < 1 

By employing the transformation, 

z 1 - at 

~2 = Z 2 ,  

Eq (2 2) may be expressed as 

a aT 

Vc2T+ a V ' l - M  2 O~:l 1( 
- _ ~ ( ~ l V ~ -  M2 )(5(~2) 

pCpa 

a v / T _ M  2 ~ -6(~:2) ) ( 2 3 )  
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We guess a solution to Eq (23) of the form 

Tp(¢, ,  ~2) = e x p [ - K ¢ ] ] f ( ¢ , ,  ~:2), (24)  

where 

a 
K -  2 a ~  ' 

which, when inserted m Eq (23), yields 

1 
V~f  - K2f = - - -  exp[ K¢, ] 

p C p a  

_ a M 2  0t~(¢,1/1- M2 )t~(¢2)] 
(25)  

a1/1 - M 2 0¢1 ) 
The left-hand side of Eq (2 5) is the modified 
Helmholtz equation The Green's function solu- 
tion of this equation is given by Arfken (1985), 

1 
G( r  ~, r ~) 2~r r o ( K I  r ~ - r¢ I) ,  (26)  

where Ko(w) is the zeroth-order modified Bessel's 
function of the second kind that 

I r  e - re I =  ¢(s~, - ¢1) 2 -I- (~:2 - (2)  2 

The first vector, r e, refers to the point of interest 
while the second vector, # ,  refers to the location 
of the point source Using the Green's function 
for the modified Helmholtz equation, the solu- 
tion to Eq (2 5) may be found, 

1 
f(¢~, ¢2) - 2"rrpCp-~ fA~ K°(Klr~-r¢l) exp[K¢l] 

Xa(~'l I ~ M  2)a(¢2) d¢l d¢2 
1 a M  2 

2"rrpcpa a1/1 - M 2 

x faro (KI r e - r;I) exp[ K¢ 1 ] 

X a(¢2) de 1 d¢2 

(27)  

Equation (2 7) may be dwlded into two integrals 

1 
f(¢l, ¢2) - - ( J l ( ¢ l ,  ¢2) +J2(¢1, ¢2)) 

2"rr pC p a 

(28)  

The first of these integrals is found using the 
fundamental property of the D]rac delta function, 

K0(~c[rel) 
J , (¢ , ,  ¢2) -- !/1 - M  2 (2 9) 

and the second may be found using the relation 

0a(¢,) 
fG(¢,, ¢2, ¢1, ~"2) ~¢1 ~(¢2) d¢l d¢2 

= _ ( 0 G ( ¢ ' ' ¢ 2 ' ' ' ' ' 2 )  ) 
0¢1 ~'1 =0, ¢2=0 

ie, 

J2(¢1, ¢2) = 

Substituting Eqs 
gives the result 

f ( ¢ , ,  ¢2) = 

M 2 

2(1 -M2) 3/2 

X(Ko(Klrel) + ~elK](Klrel) ) 
(2 10) 

(2 9) and (2 10) into Eq (2 8) 

1 

4~pCpCt(1 - Me)  3/2 

X ((2 - M 2) K0( KIr e l) 

+M2-~elKI(Klr~I)) (211) 

Remembering our initial guess for temperature In 
Eq (24), we arrive at the solution to Eq (23), 

1 

Tp(G,  ¢2) = 4aVpCpa(1 - M 2 )  3/2 exp[ - K¢ 1 ] 

x ( (2  - M2)Ko(K[ r e I) 

+M2-~IKI(KIreI)), (212) 



J J  Mason and A J Rosakts / Hyperbohc heat conducaon around a crack 267 

where 

This is the solution for hyperbolic two-dimen- 
sional heat flow around a point source travelling 
m a straight line at a constant speed, a < v, in an 
mfimte body with T = 0 as r ~ oo As ME ~ 0 this 
function gives the solution of Carslaw and Jaeger 
(1959) for a travelhng point source in a paraboll- 
cally conducting material  under identical bound- 
ary con&tions This solution differs from the so- 
lution provided by Tzou (1989a, 1989b) due to the 
interpretation of the argument  of the modified 
Bessel's function in Eq (2 6) In the work by 
Tzou, it appears  that the argument  of the modi- 
fied Bessel's function had been interpreted as the 
difference of the magnitudes of two vectors where 
it is actually the magnitude of the difference of 
two vectors The additional multiplier of the sec- 
ond term, ~ l / [ r  ~ 1, provides desirable behavior 
for the point source solution not found m the 
expressions provided by Tzou Note that using 
the t ransformatmn of coordinates in Eq (2 1) 
yields 

a 0T 

a f i -  -- M 2 O~:l 

1( 
S(~¢l~/]--- M2 , ~2) 

pcpa  

a M  2 OS(~ l~ /1 -M 2 , so2) 

a~/1 - M 2 0~ 1 
(2 13) 

and that if the slope of the source zone, 

S(~i v/1 - M 2 ,  ~2), is negatwe in the ~l direction 
there is a heating contributmn due to the second 
forcing term, if the slope of the source zone in 
the ~1 &rectlon is positive, there is a coohng 
contribution The slope of a Dlrac delta function 
in the ~i direction is negative infimte for positive 
~1 and posltwe mfimte for ~i less than zero 
(Papoulls, 1962) Consequently, ~t is expected that 
there should be a heating contribution ahead of 
the point source that transforms to a cooling 
contribution behind the point source The  

~1//1 F~¢ I term changes the sign of the second term 
in the solution to produce this behavior 

On the crack faces it is expected that the heat 
flux out of the material  is zero, that is, 

[ for ~2 = 0+ and ~1 ~ 0, 
q2 0/Jfor~2 0 -  andsCl~<0 

(2 14) 

Naturally, this is an idealization of the actual 
boundary condmon which would involve radm- 
tion transfer, convectwe transfer, etc However, ~t 
is clear that a fLxed temperature  over the entire 
crack faces is not an appropriate  boundary condi- 
tion and is not included in this analysis In 
parabolic heat conduction, symmetry of the tem- 
perature solution about the x I axas is sufficient to 
satisfy the boundary condition at the crack faces 
gwen by Eq (2 14), 

-- ff~2 ~2=0 
k - -  = q2(~l ,  0) = 0 

However, for hyperbolic heat conduction the 
symmetry results m a first-order differential 
equation, namely, 

___-aa 0q2 ~2 =0 = v2~/1 _ M  2 0~:1  + q 2 ( ~ l ,  O) 0 

It  Is obvious from Eq (2 14) that q2 = 0 is the 
solution to this equation since the material is m 
thermal equlhbrium at a constant tempera ture  
when ~i = + oo However, it is clear that in hyper- 
bohc heat conduction symmetry about the s~ axes 
does not, by itself, imply that q2 is identically to 
zero on the ~:i axis 

2 2 For the cases M 2 > 1 

By employing the transformation, 

z 1 - at 

Mfff -S_ 1 

~2 = Z2, 
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Eq (2 2) may be reformulated as 

02T O2T a 377 

- ~---~ + ~ + , ~ _  ) ~, 

- a v ~  5-aMz i 00(¢'¢-M-~-1)6(~2))0~:, (215)  

W e  guess a solution to Eq (2 15) of the form 

Tp(¢l ,  ~ 2 )  = exp[K~:,]f(¢, ,  ~:2), (2 16) 

where 

a 

a: - 2a  ~2-1/M 1 

and substitute above resulting in 

32f 3 2 f  
_ _ _  + ~ c 2 f  

a M  2 06(~:J-M - - f -  1) 8(~:2) ) (2 17) 

a v C ~  - 1 0f~ 

The left-hand side of this equation is the tele- 
graph equation The Green's  function for this 
equation may be found in Duff and Naylor (1966), 

G( r ¢, r ¢) 

= ½10( KI r ¢ - r ;  I )H 0 r ~ - r ~ 1 2 ) H ( ~ 1  - ~l) '  

(2 18) 

where 10 is the zeroth-order modified Bessel 
function of the first kind, H(x) is the Heaviside 
function and 

Ir e - r¢l = V/(G - ~ '1)  2 - -  (b¢2 - -  ~ '2 )  2 

Because of the Heavlslde terms, the solution in 
Eq (2 18) is zero outside a triangular regime 
behind the point source There exists another 

Green's  function that IS non-zero ahead of the 
point source, but this function 1s not used due to 
obvious physical arguments Because the point 
source is travelling faster than the wave speed of 
heat propagation in the material, it is physically 
impossible to have a finite temperature ahead of 
the point source Also, due to the Heavlslde 
terms, the temperature exhibits a jump or shock 
along hnes lnchned at an angle to to the negative 
~:l axis The shock angle, to, is given by the 
familiar formula, 

to = _+ s m - ~ ( 1 / M )  (2 19) 

Not surprisingly, these thermal shocks are quite 
similar to the shocks found m super-somc fluid 
flow This is to be expected since Eq (1 2) is, in 
fact, the damped wave equation 

Convolution of the Green's function for the 
telegraph equation with the forcing term m Eq 
(2 15) results in two Integrals As before, the first 
of these integrals is found using the fundamental 
property of the Dlrac delta function, 

J l ( ~ : l ,  ¢ 2 )  = i~ /~  2 _ 1 

The second integral is found using the additional 
relation 6(x - c)8(x)  = 0, 

M 2 
J 2 ( ~ 1 ,  ~ 2 )  = - 2 ( M  2 - 1) w2 

×(lO(K'r'') + ~ l l ( K ) r ' ) ) )  

XH(IreI~)H(-G) 
Combining these two gives the result 

1 
f ( ~ ,  ~2) = 4pcva(M 2 - 1) 3/2 

x ( ( M  ~ - 2)lo(Klr~))  
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Remembermg our initial guess for temperature in 
Eq (2 16), we arrive at the final result, 

Tp(~ l ,  ~2)  

1 

= 4pCpa( M 2 -  1)3/2 exp[ r~ , ]  

× ( ( M2 - 2)Io( ,dr~l) - M2 ~ l  St( ,clrf l) ) 
×H(I  r < I :)H(-s~i) (2 20) 

This is the solution of Eq (2 3) for a point source 
travelling at constant velocity with M2> I It 

differs significantly from the solution reported by 
Tzou (1989a, 1989b) due to the use of the correct 
Green's  function solution for the telegraph equa- 
tion It must be re-emphasized that the definition 
of the argument of the modified Bessel's func- 
tions, I r~l,  is significantly different in this case 
than in the previous case, and, furthermore, that 
the sign of the argument of the leading exponen- 
tial term has changed Although the two solutions 
appear similar, they are, in fact, not very similar 
at all, for example, this solution does not con- 
verge to the solution of Carslaw and Jaeger (1959) 
under any circumstances Note the effect of the 
cooling term in the forcing function on the right- 
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Fig 2 Experimental  measurements  and theoretical approximations to the plastic work zone on the surface of oil-quenched 4340 
steel during dynamic fracture At 900 m / s  the work zone is smaller (Zehnder  and Rosakls, 1991) than the work zone at 600 m / s  
(Mason and Rosakls, 1992) For each experiment the aspect ratio is the same, f = 0 05, but the size, 6, differs At 900 m / s  t5 = 5 9, 
at 600 m / s  8 = 7 5 (See Section 2 3) 
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hand side of Eq (2 15), when M 2 < 2 the temper- 
ature at the locauon of the point source is nega- 
tive due to the fact that Ii(w) ~ 0 as w ~ 0 while 
Io(w)~l as w ~ 0  If the cooling term in the 
forcing function of Eq (2 15) were neglected this 
effect would not be observed When M 2 > 2, the 
solution is always positive 

2 3 Integranon over the source zone 

For the sake of s~mphclty the heat source 
zone, S(~Cl, ~c2), has been assumed to be defined 

only on the rectangle ~:1 ~ [0, 8/V/1 - M y ]  and 
~2 E [-fS, fa] where f IS the aspect ratio of the 
zone, elsewhere it is identically to zero From the 
experimental work of Zehnder and Rosakis (1991) 
and Mason and Rosakls (1992) it is seen that a 
close approximation to the experimental heat 
source zone is given by 

 2,0 _ 2 1[ 1_ cos 

× l + c o s  f8  ] ] '  

where f = 0 05 A comparison of the approximate 
plastic zone, S(s¢l, ~:2), with the experimentally 
estimated plastic zone is shown in Fig 2 for both 
testing conditions Following the work of Bever et 
al (1973) it is assumed that 90% of the plastic 
work is converted to heat The inclusion of 1/2f 
in the denominator gives this function character- 
istlcs of a Dirac delta function in the s~2 (or x2, 
given below) direction as f ~  0 Consequently, 
this function is also normalized so that ItS integral 
in two dimensions is unity giving usable results if 
f is allowed to be zero The multiplier, Q, is 
found experimentally from the maximum value of 
the work rate density and the relation between Q 
and the maximum of the function, 

' 0  

Once this relation for the heat source zone has 
been assumed, letting 

Xl : ~ ' 1  = V1 - - M a  ~ 
8 '  

x2 = ; ~  = ~ - ,  (2 21) 

the temperature field due to the heat source zone 
ahead of a crack tip may be found by a convolu- 
tion 

1' 82 1 7< S(~'l, ~'2) 
T(x  x2)=Q f0 f sf 0 

×Tp( xl - ~i, x 2 -  ~'2) d~'2 d~'l, 

or, more specifically, for M 2 < 1 

T( xi, ~c2) 
Q82 

4 ~ p C p a ( 1  -- M2)  3/2 

fo I exp M2 × Q 1 -  

× [ ( 2 _ M 2 ) K 0 (  ~'lrx-rC[_l___ a4 5 ) 

+M2 F ~ - - ~ [  K1 - 1 - - ~  de2 d~"  

( 2 22a) 

d~2 d~" l 

(2 23a) 

where 

a8 
4,= ~-  d ,  

I r  x - r ~ [ =  f i x ,  - C,)" + (1 - M 2 ) ( x 2  - C2) e 

(2 22b) 

Normalizing temperature with respect to QS/ 
pCpa for numerical Integration yields 

pCpa 
O( X 1, X2) = T( xl, ~c2) Qa 

4, 

2rr(1 - M 2 )  3/2 

 <so, <, 

{ c × (2 - M2)Ko I _ M  2 

(Xl-Cl) (q, lrx-r~l 
+ M  2 ~ _ - r C  I Ki 1 - M 2 



J J Mason and A J Rosakts / Hyperbohc heat conducuon around a crack 271 

Similarly for M 2 > 1 2 4 Asymptottc analysts of  the lntegratton 

o(x,, x2) 

2(M 2 -- 1) 3/2 

1 -f S(~'l, ~2) ×foL  [--@(Xl--~'1) 
exp -~-2 -f  - 1 - ] 

[ × ( M  2 -  2 ) I  o M 2 ~ ~  

- m 2 ( l ~ l _ r ~ l  I1 M 2 = 1  

× H ( l r "  - r c [e )H(  -Xl  + ~'1) d~'z d~'l 

(2 23b) 

Numerical integration of the solution for M 2 
< 1 proceeds without avail The singularity in the 
modified Bessel's function of the zeroth order at 
the origin is logarithmic, therefore the integral is 
finite The singularity in the modified Bessel's 
function of the first order at the same point is of 
order 1/I  r x -  r¢l whmh IS integrable in two di- 
mensions (This is easily shown by a conversion to 
polar coordinates)  Multlphcation of Kl(~b[r x -  
r ~ l) by the factor (x I - ~'1)/I r x - r ¢ l  does not 
change the order of the singularity of this term 
since at (x 1 - ~ ' 1 )=  ( x 2 -  ~'2)= 0 this term is fi- 
nite For M 2 >  1, the integration ~s quite simple 
Since both modified Bessel functions of the first 
kind are finite at the origin, the only singularity 
occurs in the second term and this remains inte- 
grable (This is easily shown using polar coordi- 
nates ) 

The convolution, Eq (2 22a), IS evaluated nu- 
merically for 0 ~ [001, 1, 100] and M 2 
[0, 0 5, 0 9, 100, 104] The modified Bessel's func- 
tions are evaluated rather by using IMSL subrou- 
tines for small arguments or by using the asymp- 
totic expressions given below for larger argu- 
ments To find the value of the integral a two-di- 
mensional Gauss-Legendre  scheme is employed 
The number of integration points increased w~th 
the value of 0 

By employing the transform 

z 1 - at 
Xl-- ~ ' 

Z2 
X2 ~ ' 

In Eqs (1 1) and (1 2), the following expressions 
are found, 

1 0T 6 
- - V x 2 T +  - -  - - S  (2 24a) 
20 Ox 1 apcp 

and 

1 M 2 02T aT 

- ~  V 2 T 20  0x---7 + 0~1 

( ~ M2 ) 
= - S - S (2 24b) 

apCp - ~  ' 

respectively Note that as the parameter  ~b gets 
large the left-hand sides of both equations be- 
come more adiabatic and that the solution to the 
adiabatic equation is given simply as 

[25I,+cos .x2 .l, 
[ 1 f ° r x l ~ < O a n d  x 2 ~ [ -  f , f ] ,  
! 

[1 cos( crx2/ f  ) ] Oa Xl, = { 2] + 

I 

/0fo t e;lO:,11, 
(2 25) 

where the temperature has been normalized by 
Qa/pc,,a From the definition of 0, it is seen 
that one of three things may be occurring when 
~0--+m a - + 0 ,  a - -+~ or a ~  In Eqs (224a) 
and (2 24b) as ~O--+ ~ the left-hand side becomes 
the adiabatic equation, but, depending upon how 
qJ is Increasing, through a,  a or 6, the right-hand 
side may be affected as well Normalizing the 
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temperature with respect to Q6/pcpa m Eq 
(2 23a) removes this ambiguity in the limit, and, 
thus, the point source term in the mtegrand of 
Eq (2 23a) rather than Eq (2 22a) is examined 
asymptotically for M 2 < 1 

For large arguments the modified Bessel's 
functions can be approximated by 

"ff 

K°( w ) ~ ~w e x p [ - w ]  

( 1 9 ) 
× 1 8w + 128w 2 + ' 

KI(w ) ~ e x p [ - w ]  

3 15 ) 
× 1 + 8w 128w ~ + (2 26) 

Using only the first terms, the point source In the 
lntegrand for M e < 1, Eq (2 23a), can be rewrit- 
ten as 

Op(X 1 , X2) 2a.r(1 -_ M 2) 2OlrXl 

I -O(x~ +lrXl)] 
×exp ~ - - M 2  

X ( 2 - M 2  + M2 [ r -~  ) , (227)  

where 

I r x l  = v'x 2 + (1 - M 2 ) x 2  

Given that for small a2/x ~ 

exp I 

× exp [ - - -  
2 ~ J l  

(2 28) 

Eq (2 27) may be expanded to take the following 
form, 

Op(x~, x2) 2,rr(1 ~ M2) 2~x,I 

× exp [ 

× exp [ 

I _ M 2 ( X 1  +1 r ,I)  

{ 
[ 2 - M  2 + s g n ( x l ) M  2 × 

- ({2 sgn(x,)M2(1 - M-'/ 
+ [ 2 -  M 2 + sgn(.~,)M 2] 

× ( l - M 2 ) } / 4 ) ( f ~ 1 ) 2  ] 

When x 1 > 0 the exponential term e x p [ - ~ ( x  I + 
I Xa I ) / ( 1 - M e ) ]  dominates the solution and 
Tp(x l, x 2) ~ 0, on the other hand, when :t I ~< 0, 
(xl + I Xl I) = 0, the same exponential term dis- 
appears and sgn(x 0 is always negatwe Thus, 

exp - 21x, lX~ 

I 1 Op(xl' 'c2)~ × 1 4 ~ + ' 

for xl < 0 ,  

O, for x~ > 0  

(2 29) 

It is clear that, as 0 / 2 1 x ~ l  becomes large, the 
second term m the expansion becomes neghglble 
and the solution becomes independent of M 2 
Consequently, the solution for the hyperbohc heat 
conduction equation and the solutmn for the 
parabolic heat conduction equation converge to 
the same result It is also clear that as ~ /21Xl  I 

0% Op(xp x 2) becomes, as expected from the 
adiabatic solution, a Dlrac delta function (Arfken, 
1985) m x 2 However, contrary to the solution for 
the admbatlc equation and in keeping with the 
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b o u n d a r y  cond i t ion  T ~ oo as r x ~ 0% the func- 
t ion in Eq (2 29) loses ItS D i rac  de l ta  funct ion  

cha rac t e r  as I Xll grows 
Not  surpris ingly,  s imilar  resul ts  a re  found  for 

the  case  M 2 >  1 Asympto t i c  analysis  using the  
app rox ima t ions  

~/  1 
I o (  w ) ~ - -  e x p [ w ] ,  

2"n'w 

6 ( w )  ~ - -  e x p [ w ]  
2'rrw 

and fol lowing the  same s teps  ou t l i ned  above  leads  
to the  same l ead ing  t e rm cha rac t e r i za t i on  of  the  
so lu t ion  as for  the  case  M 2 < 1 Since the  govern-  
ing equa t ion  becomes  ad iaba t i c  as the  approxi -  
ma t ion  becomes  more  accura te  it is to be  ex- 
p e c t e d  tha t  bo th  solu t ions  converge  to the  same 
resul t  as they  do  

O 1 0  

0 O0 

-0 05 

Adtabatlc Solution 

4 
§ 

CracR IAne 
22 

le 
12 

4 0 

12 
16 

a 
( 

- 1 5  - 1 0  - 5  0 

F,g 3 The temperature field due to the approx,mate plastic 
work zone shown In Fig 2 for admbatlc conditions The box 
indicates the region of non-zero plastic work (see Section 
2 3 ) Good quahtatwe and quantitative agreement with the 
experimental results for a = 600 m/s Is seen The pre&cted 
temperature rise for a = 900 m/s is also good, however, the 
shape of the field does not agree with that measured when 
a = 900 m/s (See Fig I ) 

3. Results and discussion 

The  so lu t ion  for the  s imples t  case, the  adia-  
ba t ic  case  in Eq (2 25), ts shown in Fig  3 Beh ind  
the hea t  source  zone  the  ad iaba t i c  so lu t ion  is 
cha rac t e r i zed  by con tours  of  cons tan t  t e m p e r a -  
ture  ex tend ing  f rom the  hea t  source  zone  to 
x I = - o o  pa ra l l e l  to the  crack  faces  In f ront  of  
the  c rack  tip,  in the  hea t  source  zone,  the  gradi-  
en t  of  t e m p e r a t u r e  a long l ines ex tend ing  radia l ly  
f rom the crack  tip a p p e a r s  to be  cons tan t  Al -  
though  it is not  t rue  ma thema t i ca l l y  tha t  the  
rad ia l  g rad ien t  in the  hea t  source  zone  is con- 
s tant ,  it is no t ed  tha t  the  express ion  for the  zone  
used  here  is an app rox ima t ion  to the  expe r imen-  
tal  da t a  and  tha t  " ave rag ing"  in the  expe r imen t s  
due  to the  f ini te  in f ra red  d e t e c t o r  size r educes  
the  accuracy  of  the  m e a s u r e m e n t s  nea r  the  crack  
t ip ( Z e h n d e r  and Kalhvayahl ,  1991) Genera l ly ,  it 
is expec ted  tha t  if ad iaba t i c  condi t ions  prevai l  at  
the  crack  tip,  a nea r ly  cons tan t  rad ia l  g r ad i en t  
may  be  r e c o r d e d  expe r imen ta l ly  G o o d  quan t i t a -  
tive a g r e e m e n t  is found  b e t w e e n  the  p r e d i c t e d  
t e m p e r a t u r e  r ise and  the  m e a s u r e d  t e m p e r a t u r e  
r ise A max imum t e m p e r a t u r e  r ise of  298°C is 
seen  in the  expe r imen t  when  a = 600 m / s ,  and  

the p r e d i c t e d  result ,  304°C occurr ing  a long the 
crack hne,  IS very close to that  m e a s u r e m e n t  The  
m l m m u m  t e m p e r a t u r e  is 0°C occur r ing  every- 
whe re  ou ts ide  - except  d i rec t ly  beh ind  - the  hea t  
source  zone  

The  resul ts  of  the  numer ica l  in tegra t ion  for 
the  M2 < 1 cases  a re  p lo t t ed  in Figs 4 th rough  6 
F o r  small  ~ it can be  seen in F ig  4 tha t  there  is a 
m a r k e d  d e p e n d e n c e  of  the  t e m p e r a t u r e  f ield 
upon  M 2 Most  notably ,  for M 2 ~ [ 0 5 , 0 9 ]  a 
region of  t e m p e r a t u r e  d rop  is seen beh ind  the 
source  zone  This  is an in te res t ing  ma the ma t i c a l  
effect ,  but  the  resul t  is unrea l i s t ic  s ince the  com- 
b ina t ion  of  p a r a m e t e r s  in these  plots ,  ~ = 0 01 
and  M 2 E [0 5, 0 9], IS unhkely  to be seen experi-  
menta l ly  As  M 2 - ~  1 the  t e m p e r a t u r e  f ield be-  
comes  more  local ized nea r  the  origin and the 
t e m p e r a t u r e  at any given po in t  beh ind  the hea t  
source  zone  dec reases  with increas ing M 2 For  
M E = 0  the  max imum norma l i zed  t e m p e r a t u r e  
no rma l i zed  t e m p e r a t u r e ,  0ma x, occurs  roughly  at 
the  max imum of  the  hea t  source  zone  and is 
equal  to 0 1% of  the  ad iaba t i c  max imum The  
min imum,  natura l ly ,  is zero  as r - ~  ~ F o r  M 2 =  
0 5 the  max imum is moved  forward  to roughly the  
loca t ion  of  the  m i n i m u m  slope of  the  source  zone  
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Fig 4 The normalized temperature field for a propagating 
source zone with ~=001  and M 2E[0,05,09] (see Eqs 
(2 22a) and (222b) ) Note that the existence of a temperature 
drop is exhibited for M2~ [05.0 9] and that the temperature 
field becomes more localized around the source zone with 
mcreasmg M 2 

where  0ma x IS equal  to 1% of  the  ad iaba t ic  maxi-  
mum The  m i n i m u m  occurs  roughly  at  the  loca- 
t ion of  the  maxamum s lope  of  the  source  zone 
where  the  no rma l i zed  t e m p e r a t u r e  is equal  to 
- 1 %  of the  max imum ad iaba t ic  t e m p e r a t u r e  
Fo r  the  case M 2 =  0 9 the  loca t ion  of  the  maxi- 
mum and min imum is not  changed  with respect  
to the  case M 2 = 0 5  but  the  magn i tude  does.  
0md , IS equal  to 10% of  the  ad iaba t ic  max imum 
while 0m, n IS equal  to - 1 0 %  of  the ad iaba t ic  
max imum The  behav ior  seen for the  two cases 
when M e T  0 is exactly as expec ted  f rom Eqs 
(2 13) and (2 12) W h e n  M 2 ~ 0 the re  is a contr i -  
bu t ion  due  to the  s lope of  the  hea t  source zone as 
seen  in Eq (2 13) Thls  con t r ibu t ion  has a cool ing 
effect  when the s lope is a maxtmum and a hea t  
effect  when the s lope is a min imum,  as M 2 ~  1 
the  s ignif icance of  the  hear ing  and cool ing due to 
the  modi f i ed  Bessel ' s  funct ion of  the first o r d e r  
becomes  g rea te r  and more  d o m i n a n t  Thus,  as 
M 2--* 1, the  max imum t e m p e r a t u r e  moves to the  
locat ion of  m in imum slope and  the min imum 
t e m p e r a t u r e  moves  to the  locat ton of  the  maxi- 
m u m  slope Both  max imum and min imum in- 
c rease  in magn i tude  as M 2 ~ 1 

Fo r  la rger  ~,  Fig 5, the  d e p e n d e n c e  of  the 
t e m p e r a t u r e  f ield upon  M 2 begins  to d i s a p p e a r  
No negat ive  t e m p e r a t u r e  changes  are  seen,  when 
M 2 =  0 9 the  t e m p e r a t u r e  does  exhibit  a posit ive 
min imum nea r  the  tall end  of  the hea t  source 
zone Thus,  some coohng effects due  to the  sec- 
ond source t e rm in Eq (2 13) r ema in  Al though ,  
far  f rom the hea t  source zone,  x l / 6  > 1, all t h ree  
f ields a re  equal  As  M 2 ~ 1 a local iza t ion of  the  
t e m p e r a t u r e  nea r  the source zone is stlll seen 
The  max imum t e m p e r a t u r e  is loca ted  nea r  the  
max imum of  the  source  funct ion in each sub-case 
a l though it moves forward  slightly as the the rmal  
Mach  n u m b e r  increases  The  max imum normal -  
lzed t e m p e r a t u r e  increases  with the rmal  Mach 
number ,  0md x = 0 7 5 ,  1, 15  for M 2 = 0 , 0 5 , 0 9 ,  
respect ively These  values  are  3 25%, 5% and 
7 5% of  the  max imum t e m p e r a t u r e  u n d e r  adia-  
bat ic  condi t ions  

Fo r  even la rger  ~b, Fig 6, the d e p e n d e n c e  
upon  M 2 d i s appea r s  comple te ly  as expec ted  f rom 
the asymptot ic  analysis,  Eq (2 29), and  the hyper-  
bolic hea t  conduc t ion  solut ion is indis t inguishable  
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Fig 6 The normahzed temperature field for a propagating 
source zone with ff = 100 and M 2 ~[0, 09] The two fields 
are wrtually mdistmgmshable No dependence upon M 2 is 
seen 
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Fig 5 T h e  n o r m a h z e d  t e m p e r a t u r e  f ield for a propagat ing  
source zone with g, = 1 and M 2 El0, 05,  09] There exist no 
t e m p e r a t u r e  drops  as for ~b = 0 01 m Fig 4, however ,  the 
t e m p e r a t u r e  f ie ld b e c o m e s  increas ingly  l o c a h z e d  around  the 
heat  source  as the thermal  M a c h  number ,  M, increases  lead-  
mg  to h igher  t e m p e r a t u r e  rises at the m a x i m u m  

from the solutton for parabohc heat conduct ion 
at all values of  M 2 <  1 N o  locahzatton of  the 
temperature near the heat  source zone  Is discern- 
able The  maxtmum temperature occurs shghtly 
behind the maxtmurn of  the heat source zone  
with a value  of  7 5 - 3 2  5% of  the maximum tem- 
perature under adiabatic c o n d m o n s  

Small $ accounts  for a small  source zone ,  ~, 
low velocity, a, or a large thermal dlffUSWlty, a 
(see Eq (2 22b)) For metals  these c o n d m o n s  do 
not reflect the usual experimental  c o n d m o n s  For 
4340 steel,  a = 10 -5, and a6 = 2 for both expert- 
ments  shown m Fig 1 gwmg ¢ ~ 1 0 5  m both 
cases For comparison the results o f  the integra- 
t ion for = l0  s have been  plotted m Fig 7 It is 
seen  that the theoretical  temperature  field 
matches  the experimental  results, Fig 1, wel l  for 
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a = 600 m / s  and that both the theoretical tem- 
perature field and the experimental temperature 
field resemble the adiabatic solution, Fig 3 Con- 
tours extend from the heat source zone nearly 
parallel to the crack faces toward x~ = -co be- 
fore curving in to meet the negative x~ axis The 
results for ~p = 105 differ from the adiabatic solu- 
tion in that the temperature decreases as [x~[ 
increases behind the heat source zone It is re- 
iterated that this decrease is expected due to the 
zero temperature boundary condition at [x~[ = 

This boundary condition more closely approxi- 
mates the experimental condition than an adia- 
batic boundary condition because there is, after 

a - 9 0 0 r a / s  
> 

• Pc  z |no . 

. 0  = . J /  
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- 40  20  0 20  
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Fig 7 The  theore t i ca l  t e m p e r a t u r e  f ie lds  for approx ima te  
expe r imen ta l  c o n d m o n s  when  a = 900 m / s  and  600 m / s  
G o o d  a g r e e m e n t  ~s seen  m the p red ic ted  m a x i m u m  tempera -  
ture  at  the c rack  I~p, however ,  some & s c r e p a n o e s  occur  
be tween  the  genera l  shape  of the f ield m this  f igure and the 
t e m p e r a t u r e  f ields shown m Fig  1 (@ = 10 s, ~ = 7 5 mm for 
a = 600 m / s  and  6 = 5 m m  for a = 901) m / s  ) 
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Fig 8 The  theore t ica l  t e m p e r a t u r e  field when  M 2 = 104 and 

0 = 10 ~ r e sembles  tha t  in Fig 1 when  a = 900 m / s  This  

r e semblance  is coincidenta l ,  however ,  because  the large value 
of M 2 m & c a t e s  the rmal ly  supe r somc  behavior ,  this  should  

also be expec ted  w h e n  a = 600 m / s  and  no such behav io r  is 
observed  

all, a small but significant amount of heat con- 
ductlon leading to a cooling of the specimen as 
[x~[-~oo It is noted that the temperature de- 

creases more rapidly behind the crack tip in the 
experiments than in the theory This is attributed 
to heat loss by radiation and convection at the 
surface Kuang and Atlurl (1985) have included 
these effects in their numerical parabolic heat 
conduction analysis, and they report a more rapid 
decrease in the temperature behind the crack 
than when radiation and convection are n o t  ne- 
glected For a = 900 m / s  in Fig 1 a discrepancy 
with the theoretical results for ME ~( 1 in Fig 7 Is 
seen The contours seen experimentally emanate 
from the source zone outwardly before curving in 
to meet the negative x~ axis (The predicted 
maximum temperature at the crack tip IS in good 
agreement with the experimental measurement, 
however, owing to the adiabatic conditions at the 
c r a c k  t i p  ) 

For M2 > 1 an exemplary plot is shown in Fig 
8 The resemblance of this figure to the results 
recorded in Fig 1 for a = 900 m / s  is striking, 
however, the experimental temperature field for 
a = 900 m / s  shows what might be interpreted to 
be thermal shocks at a shock angle corresponding 
to a large Mach number, M = 100 If this value 
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for M is accurate then when a = 600 m / s  the 
temperature field should also show similar ther- 
mal shocks, it does not Also, because $ = 105 
experimentally and not 103 as in Fig 8, the 
theoretical temperature  field for thermally 
super-somc crack propagation at a = 900 m / s  
actually resembles the temperature field in Fig 7 
This is expected from the asymptotic analysis and 
has been checked numerically by the authors 
Therefore, it is clear that no evidence of ther- 
mally super-sonic crack propagation is observed 
in these experiments 

The difference between the experimentally ob- 
served temperature field at a = 900 m / s  and the 
predicted field at the same crack speed is due to 
crack face opening (Mason and Rosakts, 1992) 
The opening velocity required to produce the 
observed effect is 7 5 m/s ,  a reasonable crack 
opening velocity It is expected that the crack 
face opening speed depends upon the initial static 
stress intensity factor and the crack velocity From 
simple theory one might expect that the crack 
face opening velocity mcreases by as much as 5 
times when the crack speed increases from 600 
m / s  to 900 m / s  (Freund, 1977) This suffices to 
explain the difference in the temperature fields in 
Figs 1 and 7 

4. Conclusions 

m / s  Contours of constant temperature extend 
from the crack tip to Ix I I = - ° °  nearly parallel 
to the crack faces before curving In to meet the 
negative x 1 aras m region of nearly constant 
radial temperature gradient is observed ahead of 
the crack tip The temperature field greatly re- 
sembles the solution for adiabatic conditions due 
to the high crack velocity, a, small heat produc- 
tion zone, 6, and low thermal dlffuslvlty, a, of 
4340 steel 

When a = 900 m / s  the temperature field does 
not show behavior that is predicted by parabohc 
or hyperbolic heat conduction It is understood 
that this difference is due to opening of the crack 
faces behind the crack tip (Mason and Rosakls, 
1992) Thus, no evidence of hyperbohc heat con- 
ductlon is observed, and ~t is concluded that the 
travelhng point source shows little promise as an 
experimental method for the investigation of the 
hyperbolic heat conduction effect A feasible 
source zone size combined w~th the normal range 
of material parameters for engmeerlng materials 
consistently leads to near adiabatic conditions 
around the source zone unless a very low thermal 
wave speed is expected (~  1 m / s )  Furthermore, 
It ~s noted that hyperbolic heat conduction Is 
expected only at very low temperatures and only 
for very special matermls (Nemat-Nasser, 1992) 
making this phenomenon even less hkely to occur 
under these experimental conditions 

From the asymptotic analysis of the travelhng 
point source solution of the hyperbolic that con- 
ductlon equation, it is clear that, for crack propa- 
gation m metals when the crack speed is either 
lower or higher than the material heat propaga- 
tion speed, the difference between hyperbolic 
heat conduction and parabohc heat conduction is 
neghglble (see Figs 6 and 7) As the factor qJ = 
a 6 / 2 a  gets large (qt ~ 105 for a crack propagat- 
Ing In 4340), solutions for a travelling point source 
in a hyperbohc or parabohc material converge to 
the same result This end result Is insensitive to 
changes in the thermal Mach number, M, and is 
very similar to the solution for a travelling source 
zone in an adiabatic material 

The temperature field m Fig 1 exhibits quasi- 
adiabatic heat conduction behavior when a = 600 
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