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The effects of hyperbolic heat conduction
around a dynamically propagating crack tip !
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Using nfrared detectors, Zehnder and Rosakis (1991, J Mech Phys Solids 39(3), 385), Zehnder and Kallivayalil (1991,
SPIE ISS4A, 48) and Mason and Rosakis (1992, SN Report 92-2), have recorded the temperature field around a dynamically
propagating crack tip travelling at constant velocity in several metals At the same time, Tzou (1990a, J Heat Transfer 112,
21, 1990b, Inst Heat Mass Transfer 33(5), 877) has suggested that the temperature field around a propagating crack tip
might exhibit some of the characteristics of hyperbolic heat conduction In this paper a corrected solution of the hyperbolic
heat conduction equation for a travelling point source 1s derived Then an experimental estimate of the active plastic zone
(heat generating zone) at a crack tip 1s used for various experimental conditions to examine the possible effects of hyperbolic
heat conduction around a propagating crack tip Finally, using the actual experimental conditions of Zehnder and Rosakis
(1991), Zehnder and Kallivayalil (1991) and Mason and Rosakis (1992) 1t is shown that no effects of hyperbolic heat
conduction are observed around a propagating crack tip It 1s seen that, due to adiabatic conditions at the crack tip during
these experiments, the solution of the hyperbolic heat equation 1s indistinguishable from the solution of the parabohic heat

conduction equation for crack propagation 1n steel
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1. Introduction

It 1s understood that the classical, or parabolic,
heat conduction equation has an inherent pathol-
ogy That 1s, when a point source is mtroduced
mto a conducting medium, the parabolic heat
conduction equation predicts that 1ts presence 1s
mstantaneously felt throughout the medium Of-
ten this pathology 1s referred to as ‘““the infinite
speed of heat propagation,” and 1t has been ad-
dressed by Morse and Feshbach (1953) through
the introduction of a new heat flux law Usually,
the heat flux, ¢, 1s related to the gradient of
temperature by Fourier’s law,
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qg=—kVT

When this relation 1s combined with the expres-
sion for the continuity of energy,

-V q+S=pc,T,

where the dot refers to time differentiation, the
parabolic heat conduction equation results,

1
aVT—-T=—-—8§ (11)
pC[)

(In this paper, the temperature, T, 1s imphcitly
taken as the change in temperature above ambi-
ent, T=T,. s — Tumwent ) If, Instead of Fourier’s
law, a new heat flux law 1s used,

a
—q+tq= ~k VT,
L

then through similar manipulations the ‘“‘hyper-
bolic” heat conduction equation results,

a 1 a
aVT— =T-T=-—/[5+=5 (12)
0t pc, 12

The mtroduction of the new heat conduction law
has been justified by several authors (for a review
see Tzou (1990a, 1990b)) and some experimental
work has shown that this different heat conduc-
tion equation 1S more appropriate at large dis-
tances from a point source or at very short times
after the mtroduction of a pomnt source (Kamin-
ski, 1990) An estimate for the speed of heat
propagation in materials, ¢, may be found
(Baumeister and Hamull, 1969) and for steel this
estimate predicts a speed of heat propagation on
the order of 10°> m/s

Zehnder and Rosakis (1991) and Mason and
Rosakis (1992) have measured the temperature at
the tip of a dynamucally propagating crack for
crack tip velocities ranging from 600 to 900 m/s
m 4340 steel The temperature fields show a
strong difference n their geometric nature, see
Fig 1, and, since these velocities are comparable
to the estimate for the wave speed of heat propa-
gation, 1t 1s suggested that this difference may be
due to hyperbolic heat conduction In order to
determine whether hyperbolic heat conduction 1s
active in these experiments, 1t 1s the purpose of
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Fig 1 Temperature fields around a crack propagating in
oil-quenched 4340 steel at two different velocities The maxi-
mum temperature at higher velocities 1s 450°C (Zehnder and
Rosakis, 1991) while the maximum temperature at 600 m/s s
300°C (Mason and Rosakis, 1992)

this investigation to produce theoretical tempera-
ture fields for the problem of a crack propagation
in a hyperbolically conducting metal It 1s funda-
mentally important to note that the propagation
of a crack produces plastic deformation at the
crack tip and that the plastic work generated
during this deformation 1s mostly transformed
into heat Therefore, the problem of calculating
the temperature field around a propagating crack
tip 1s more correctly stated as the problem of
calculating the temperature field around a propa-
gating heat source zone with careful attention
paid to the boundary conditions at the crack
faces
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Several investigations of the temperature field
around a propagating crack have been reported
for parabolic heat conduction (For a complete
review of this field of work see Mason and Rosakis
(1992)) The most pertinent here 1s the work of
Weichert and Schonert (1978) These authors nu-
merically calculated the temperature fields
around propagating heat source zones by inte-
grating the solution of the parabolic heat conduc-
tion equation for a travelling point source over a
rectangular heat source zone of constant magni-
tude A similar methodology 1s used here The
dynamic crack 1s modelled two-dimensionally by a
heat source zone, the crack tip plastic zone, prop-
agating at a constant velocity with a trailing line
of insulated crack faces (The velocity 1s a signmifi-
cant fraction of the shear wave speed in the
material making 1t a dynamic crack) It 1s as-
sumed that the crack faces do not open It should
be noted that in all theoretical investigations of
the temperature field around a propagating crack
tip the assumptions made about the plastic work
zone and, consequently, the heat source zone
have proven to be extremely important in the
calculation of maximum temperature Due to the
complexity of the three-dimensional deformation
where temperature measurements are performed
(at the surface of the specimen), 1t 1s difficult to
accurately describe the plastic work zone 1n closed
form and most assumptions result in an oversim-
plification of the experimental problem Conse-
quently, in this work the shape of the plastic work
zone 1s estimated from the experiments of Zehn-
der and Rosakis (1991) and Mason and Rosakis
(1992) directly, eliminating over-simplification
and, thus, more closely approximating the experi-
mental data The effects of shear lip formation,
reverse plasticity upon material unloading, et,
are mmphcitly accounted for in the experimental
approximation of the active plastic zone

2. Theoretical development

First 1t 1s necessary to find the solution of the
hyperbolic heat conduction equation for a point
source travelling at constant velocity Although
earher attempts to provide solutions of Eq (1 2)

for a travelling point source exist (Tzou, 1989a,
1989b), the solution given here includes some
corrections that significantly alter the behavior of
the solution

We are interested 1n solving the equation,

1
VT - —T——T
v @
1
= - p (5(21 at, z,)

a
+—8(z, —at, 22)), 21)
LY

for a pomt source travelling at a constant velocity,
a, in the z, direction, 1 ¢,

S(z,—at, z,) =8(z,—at)d(z,)

Substituting for S(z, — at, z,), Eq (2 1) becomes

11
VT-—T-~T
v a

= - pclpa 8(zy—at)é(z,)
38(z; —at)
e L)

It may be shown that the solution of this equation
depends upon M2, where M =a /v, and that this
dependence may be divided into three regimes,
M?*<1, M?=1 and M?>1 The former and
latter cases will be addressed here

21 For the case M? < 1

a
r?

By employing the transformation,

z,—at
Ve
§2=22’
Eq (22) may be expressed as
vrs —— L
R SRy VERFTS

1 ———
=T 5(§1 1_M2)5(§2)
pc,a

__aM? 66(§1\/1—M2)8 -
Wit ) @Y




266 JJ Mason and AJ Rosakis / Hyperbolic heat conduction around a crack

We guess a solution to Eq (2 3) of the form
Tp(§1’§2)=exp[—’<§l]f(§l’§2)’ (24)

where

a
K= ——F—,
2aV1 - M?

which, when nserted in Eq (2 3), yields

1
szf— Kf=—
pc

14

x| 8(&,V1-M?)5(¢,)

_aM? aa(g,\/l—zw)(s )
S e ) @Y

The left-hand side of Eq (25) 1s the modified
Helmholtz equation The Green’s function solu-
tion of this equation 1s given by Arfken (1985),

exp[ ¢, ]
a

1
G(rf, ,.l)=_2—K0(K|r£—r§|), (26)
™

where K,(w) 1s the zeroth-order modified Bessel’s
function of the second kind that

e —rtl= (6, - 1)+ (6 - 1)

The first vector, ré, refers to the point of interest
while the second vector, ré, refers to the location
of the pomt source Using the Green’s function
for the modified Helmholtz equation, the solu-
tion to Eq (2 5) may be found,

1
f(é1, &)= mfA!Ko(Kl’g—’q) exp[«{,]

x8(,V1—-M?)8(¢,) d¢; de,
1 aM?
 2mpc,a gV1- M2
Xf Ko(klré —rtl) exp[«;]
o
y 28(¢,V1-M?)
3,

5(£,) df; dg,
27

Equation (2 7) may be divided into two integrals
1

2mpc,a

f(§1’§2)= (Jl(§1a§2) +Jz(§1’§2))

(28)

The first of these integrals 1s found using the
fundamental property of the Dirac delta function,

Ko(xlrtl)
J‘(“":"é)_ﬁ (29)
and the second may be found using the relation

9(41)
JG(& &2, 41, £) —0(4) dE 4,
1

- _ ( aG({:l’ §2’ gl’ §2) )
agl £=0, §2=0’
1e,
2
L (§, &) = m
X(KO(KM) ' i—;lxl(mfn)

(2 10)

Substituting Eqs (29) and (2 10) into Eq (28)
gives the result

1
f(gl’ §2) - 411-pcpa(1 _M2)3/2

x| (2= M) Ky(xlrél)

3
+ M2 K (k] ]
|ré]
Remembering our imitial guess for temperature n
Eq (2 4), we arrive at the solution to Eq (2 3),

(2 11)

Tp(gl’ §2) = 3/2€Xp[—K§1]

4mpc,a(l —M?)

x| (2= M) Ko(xlrél)

+M2—K,(xlréy |,

£
P 21
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where

Irél = BT+ 85

This 1s the solution for hyperbolic two-dimen-
sional heat flow around a point source travelling
1n a straight line at a constant speed, a <v, 1n an
infinite body with T=0as r > o As M? > 0 this
function gives the solution of Carslaw and Jaeger
(1959) for a travelling point source in a paraboli-
cally conducting material under 1dentical bound-
ary conditions This solution differs from the so-
lution provided by Tzou (1989a, 1989b) due to the
interpretation of the argument of the modified
Bessel’s function m Eq (26) In the work by
Tzou, 1t appears that the argument of the modi-
fied Bessel’s function had been interpreted as the
difference of the magnitudes of two vectors where
it 1s actually the magmtude of the difference of
two vectors The additional multipher of the sec-
ond term, £,/|r¢|, provides desirable behavior
for the point source solution not found in the
expressions provided by Tzou Note that using
the transformation of coordmnates in Eq (21)
yields

oT

a
aV1-M? %,
1
= - ——|S(&V1-M2, &)

Cp

VAT +

_aM’ a8(¢,V1-M?, &) 2 1)

avl —M? 3¢,

and that if the slope of the source zone,

S(¢,V1—M?, &), 1s negative m the ¢, direction
there 15 a heating contribution due to the second
forcing term, if the slope of the source zone in
the ¢, direction 1s positive, there 1s a cooling
contribution The slope of a Dirac delta function
in the £, direction 1s negative infinite for positive
£, and positive infinite for £, less than zero
(Papoulss, 1962) Consequently, 1t 1s expected that
there should be a heating contribution ahead of
the pomnt source that transforms to a cooling
contribution behind the point source The

&,/1r%| term changes the sign of the second term
i the solution to produce this behavior

On the crack faces 1t 1s expected that the heat
flux out of the material 1s zero, that 1s,

for £, =0"% and ¢,

0,
=0
% for £,=0" and &,

0 (2 14)

<
<

Naturally, this 1s an 1dealization of the actual
boundary condition which would involve radia-
tion transfer, convective transfer, etc However, 1t
1s clear that a fixed temperature over the entire
crack faces 1s not an appropriate boundary condi-
tion and 1s not included i this analysis In
parabolic heat conduction, symmetry of the tem-
perature solution about the x, axis 1s sufficient to
satisfy the boundary condition at the crack faces
given by Eq (2 14),

oT
—k—

oc, =q,(£,,0)=0

£,=0

However, for hyperbolic heat conduction the
symmetry results i a first-order differential
equation, namely,

—aa 99,

vV1 —M? E

It 1s obvious from Eq (2 14) that g,=0 1s the
solution to this equation since the material is in
thermal equilibrium at a constant temperature
when &, = +o However, it 1s clear that in hyper-
bolic heat conduction symmetry about the &; axes
does not, by itself, imply that g, 1s 1dentically to
zero on the &, axis

+45(£,,0)=0
£,=0

22 For the cases M? > 1

By employing the transformation,

z,—at
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Eq (2 2) may be reformulated as

2T ¥cT a T
97 B¢ aYMP-1 ¥

= : 6(51°M2‘1)5(§2)

pe,a
aM? 5[, VM?-1)
- = 8(&,)) (215)
a¥M? -1 23

We guess a solution to Eq (2 15) of the form
Tp(fl’§2):exP[K§1]f(§l’§2)’ (2 16)

where

a
< ZaW
and substitute above resulting 1n
alf Zf
T

laexp[—Kfl](5(§1VM2‘ 1 )5(§2)

aM? 88(§1\/M2—1)6(§) 21)
ayM? -1 0¢, g

+ k*f

The left-hand side of this equation 1s the tele-
graph equation The Green’s function for this
equation may be found in Duff and Naylor (1966),

G(rt, r®)
= Lg(wlrt =) H(1r¢ = £V H(L - 1),
(2 18)

where [, 1s the zeroth-order modified Bessel
function of the first kind, H(x) 1s the Heaviside
function and

P —rfl= (&, = 0) ~ (6, - &)

Because of the Heaviside terms, the solution
Eq (218) 1s zero outside a triangular regime
behind the point source There exists another

Green’s function that 1s non-zero ahead of the
point source, but this function 1s not used due to
obvious physical arguments Because the pomnt
source 1s travelling faster than the wave speed of
heat propagation 1n the matenal, 1t 1s physically
impossible to have a finite temperature ahead of
the point source Also, due to the Heaviside
terms, the temperature exhibits a jump or shock
along lines inclined at an angle w to the negative
¢, axis The shock angle, w, 1s given by the
familiar formula,

w=+ sm ' (1/M) (2 19)

Not surprisingly, these thermal shocks are quite
similar to the shocks found in super-sonic flud
flow This ts to be expected since Eq (12) 1s, in
fact, the damped wave equation

Convolution of the Green’s function for the
telegraph equation with the forcing term n Eq
(2 15) results m two mtegrals As before, the first
of these integrals 1s found using the fundamental
property of the Dirac delta function,

o(klré]
1(51,52)“\/%

The second integral 1s found using the additional
relation 6(x —¢)8(x) =0,

H(Ir ) H(~£,)

MZ

Jo€1, €)= *W

0(""'“) T

e "Cl IL{«lrél)

2
xH(Ir$1"YH(~¢))
Combining these two gives the result

1
4pc,a(M? - 1)

f(é\’ §2) =
x((MZ—z)IO(K?rfI)

lflz(Klrfl)) (rf\Z)H(—gl)
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Remembering our mitial guess for temperature 1n
Eq (2 16), we arrive at the final result,

T,(¢1, £2)

= exp[«¢;]
4pcpa(M2— 1)3/2 1

X [ (M? = 2) I,( x| ré]) —Mz-‘—f—lgl—ll(ﬂrq)
x H(Iré "V H(—¢,) (2 20)

Thus 1s the solution of Eq (2 3) for a point source
travelling at constant velocity with M2>1 It
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differs sigmificantly from the solution reported by
Tzou (1989a, 1989b) due to the use of the correct
Green’s function solution for the telegraph equa-
tion It must be re-emphasized that the definition
of the argument of the modified Bessel’s func-
tions, |r¢|, 1s significantly different in this case
than 1n the previous case, and, furthermore, that
the sign of the argument of the leading exponen-
tial term has changed Although the two solutions
appear similar, they are, in fact, not very similar
at all, for example, this solution does not con-
verge to the solution of Carslaw and Jaeger (1959)
under any circumstances Note the effect of the
cooling term 1n the forcing function on the right-
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Fig 2 Experimental measurements and theoretical approximations to the plastic work zone on the surface of oil-quenched 4340
steel during dynamic fracture At 900 m/s the work zone 1s smaller (Zehnder and Rosakis, 1991) than the work zone at 600 m/s
(Mason and Rosakis, 1992) For each experiment the aspect ratio 1s the same, f = 005, but the size, 3, differs At900m/s 6 =59,

at 600 m/s § =75 (See Section 2 3)
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hand side of Eq (2 15), when M? < 2 the temper-
ature at the location of the point source 18 nega-
tive due to the fact that I,(w) — 0 as w — 0 while
I(w)—1 as w—0 If the cooling term 1n the
forcing function of Eq (2 15) were neglected this
effect would not be observed When M?> 2, the
solution 1s always positive

2 3 Integration over the source zone

For the sake of simplicity the heat source
zone, S(£,, £,), has been assumed to be defined
only on the rectangle ¢, €1[0,8/V1—M?] and
&,e€[—f6, f6] where f 1s the aspect ratio of the
zone, elsewhere 1t 1s 1dentically to zero From the
experimental work of Zehnder and Rosakis (1991)
and Mason and Rosakis (1992) 1t 1s seen that a
close approximation to the experimental heat
source zone 1s given by

S(én &) 1 [ (hx/l—Mzgl”
— =—|l—-cos| —————
Q 2f o

T
Al

where f= 005 A comparison of the approximate
plastic zone, S(£,, £,), with the experimentally
estimated plastic zone 1s shown 1n Fig 2 for both
testing conditions Following the work of Bever et
al (1973) 1t 1s assumed that 90% of the plastic
work 1s converted to heat The inclusion of 1/2f
1n the denominator gives this function character-
istics of a Dirac delta function in the &, (or x,,
given below) direction as f— 0 Consequently,
this function 1s also normalized so that its integral
in two dimensions 1s unity giving usable results if
f 1s allowed to be zero The multiplier, Q, 1s
found experimentally from the maximum value of
the work rate density and the relation between Q
and the maximum of the function,

Q = %meax

Once this relation for the heat source zone has
been assumed, letting

3
x==V1-M>—,

_&
2.

X1+ cos

Xy =03 (221)

the temperature field due to the heat source zone
ahead of a crack tip may be found by a convolu-
tion

S(4, ¢
T(xl,x2)=Q62f01f_ff"”—( G .

XT,(xy = ¢y, x3— ;) dg, dg).
or, more specifically, for M? < 1
T(x, x3)
Q5°
4mpc,a(l —M?)

v of S(84s &) —¢(x;—¢))
Xfo/ff Q exp[ }

3/2

1-M?
([;lr’—rgl
X[(Z—M2>Ko(‘r:‘M—z)
(x;—=¢y) ylr—rfl
2
+M |rx—r§|K1( 1—M? ” a2 dév.
(2 22a)
where
ad
=5
=P = = 0+ (L= M) (1, — 22
(2 22b)

Normalizing temperature with respect to Q&/
pc,a for numerical integration yields

pc,a
Q‘; T(x), X,)

v
2m(1 - M2

1 fS({p {2) _ll’(xl"{l)
Xj;)f—f Q exp[ 1-M? ]

tll|r’—rf|)

0(x,, x;) =

Xl(z—Mz)KO( l_MZ

— X _ pd
el zl)K(wlr r l)} 4z, az,

lrx—ps| T 1-M?
(2 23a)
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Simularly for M2 > 1

6(xy, x3)
__ ¥
AME-1)"?
1rf S(;]a fz) _l//(xl_gl)
|
wlrs —ré|
x <M2‘2)’0(W)
(x;— &) olrs—rtl
g2
M ] ( M1 )

xH(Ir* = r¢PYH(~x, + £,) dZ, dZ,
(2 23b)

Numerical integration of the solution for M?
< 1 proceeds without avail The singularity in the
modified Bessel’s function of the zeroth order at
the origin 1s logarithmic, therefore the integral is
finite The singularity in the modified Bessel’s
function of the first order at the same point 1s of
order 1/|r*—r¢| which 1s integrable n two di-
mensions (This 1s easily shown by a conversion to
polar coordinates ) Multiplication of K,(¢|r* —
rt|) by the factor (x, —¢,)/|r*—r¢| does not
change the order of the singularity of this term
since at (x; — ;) =(x,—¢,)=0 this term 1s fi-
mte For M?> 1, the integration 1s quite stmple
Since both modified Bessel functions of the first
kind are finite at the origin, the only singularity
occurs in the second term and this remains inte-
grable (This 1s easily shown using polar coordi-
nates )

The convolution, Eq (2 22a), 1s evaluated nu-
merically for ¢ [001, 1, 100] and M?e
[0,05,09, 100, 10*] The modified Bessel’s func-
tions are evaluated erther by using IMSL subrou-
tines for small arguments or by using the asymp-
totic expressions given below for larger argu-
ments To find the value of the mtegral a two-di-
mensional Gauss-Legendre scheme 1s employed
The number of integration points increased with
the value of ¢

2 4 Asymptotic analysis of the integration

By employing the transform

z,—at
xl_ 6 ’

22
¥

in Egs (11) and (1 2), the following expressions
are found,

Y L I (2 242)
2 0x, apc,
and
1 M? T oT
—_—V2ir— —
2¢ 2¢ axf 0x,
i’ MZS 2 24b
B apc, 2¢ |’ ( )

respectively Note that as the parameter  gets
large the left-hand sides of both equations be-
come more adiabatic and that the solution to the
adiabatic equation 1s given simply as

1
Z‘[l +cos(mwx,/f)],

for x, <0and x,€[-f, f],

1
5?[1 + cos(mx,/f)]

0.(xy, X3) =
1
X 1—x1+—2;sm(2-n-x1) ,

forx, €[0,1], x,e[-f, f],

0, otherwse,

(225)

where the temperature has been normalized by
Q8/pc,a From the defimtion of ¢, 1t 1s seen
that one of three things may be occurring when
oo a0, a—>xor §>x In Eqs (224a)
and (2 24b) as ¢ — « the left-hand side becomes
the adiabatic equation, but, depending upon how
¢ 1s increasing, through «, a or 8, the nght-hand
side may be affected as well Normalizing the
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temperature with respect to Q6/pc,a mn Eq
(2 23a) removes this ambiguity 1n the limit, and,
thus, the point source term in the mntegrand of
Eq (2 23a) rather than Eq (2 22a) 1s examined
asymptotically for M> < 1

For large arguments the modified Bessel’s
functions can be approximated by

e
Ko(w) ~y/ 5 exp[ —w]

X1

1 9
S—— + :
8w 128w? )

"
K\(9) ~ /5 expl - w]

(1 ) 1> ) 226
X1+ —=———=+

8w 128w? ( )
Using only the first terms, the point source n the
integrand for M2 < 1, Eq (2 23a), can be rewnt-
ten as

6 d i
P60 220 = o) 2l
—¥(x, +|’x|)}

XTI Ty

X
X(Z—M2+M2 ‘ ) (227)

|
where

[r¥|=yxi+ (1 -M?*)x;

Guwen that for small x,/x,

v v
exp[— I |]= exp[—l—_mw]

B Plx| (2)2
2 \x, ]V

(2 28)

X exp

Eq (2 27) may be expanded to take the following
form,

1/ e
2a(1-M*) Y 2y|x,|

Bp(xl’xz)N

¥
X exp —l—r—m(xl+|¥]|)
X exp wrxll(xz)z
x| — _z
2 \x
x|2-M?*+sgn(x,)M?

— ({2 sen(x ) M2(1 - M?)
+[2- M+ sgn(x,)M?]

><(1—M2)}/4)(?)2 l

1

When x, > 0 the exponential term exp[ —(x, +
| x,1)/(1 — M?)] domunates the solution and
T(x,, x,)~0, on the other hand, when 1, <0,
(x,+ 1x,1)=0, the same exponential term dis-
appears and sgn(x,) 1s always negative Thus,

7 v
2wl | "zm”}
0(x1s 1) ~ X[I_Q:EM_”(E)Z+ l
4 X,
for x, <0,
0, forx,>0
(229)

It 1s clear that, as ¢/2|x,| becomes large, the
second term 1n the expansion becomes neglgible
and the solution becomes ndependent of M
Consequently, the solution for the hyperbolic heat
conduction equation and the solution for the
parabolic heat conduction equation converge to
the same result It 1s also clear that as /2] x, |
— o, 8,(x,, x,) becomes, as expected from the
adiabatic solution, a Dirac delta function (Arfken,
1985) in x, However, contrary to the solution for
the adiabatic equation and in keeping with the
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boundary condition T — » as r* — o, the func-
tion mn Eq (229) loses its Dirac delta function
character as | x| grows

Not surprisingly, similar results are found for
the case M2>1 Asymptotic analysis using the
approximations

o(w) ~ | 3 explw],

1
L(w) ~ V Zy— exp[w]

and following the same steps outlined above leads
to the same leading term characterization of the
solution as for the case M2 <1 Since the govern-
Ing equation becomes adiabatic as the approxi-
mation becomes more accurate it 1s to be ex-
pected that both solutions converge to the same
result as they do

3. Results and discussion

The solution for the simplest case, the adia-
batic case mn Eq (2 25), 1s shown in Fig 3 Behind
the heat source zone the adiabatic solution 1s
characterized by contours of constant tempera-
ture extending from the heat source zone to
x, = — parallel to the crack faces In front of
the crack tip, in the heat source zone, the gradi-
ent of temperature along hines extending radially
from the crack tip appears to be constant Al-
though it 1s not true mathematically that the
radial gradient in the heat source zone is con-
stant, 1t 1s noted that the expression for the zone
used here 1s an approximation to the experimen-
tal data and that “averaging” in the experiments
due to the fimite infrared detector size reduces
the accuracy of the measurements near the crack
tip (Zehnder and Kallivayall, 1991) Generally, 1t
1s expected that if adiabatic conditions prevail at
the crack tip, a nearly constant radial gradient
may be recorded experimentally Good quantita-
tive agreement 1s found between the predicted
temperature rise and the measured temperature
nse A maximum temperature rise of 298°C 1s
seen 1n the experiment when a = 600 m/s, and

Adtabatic Solution
T B

| BRI

005

X/ 6
o
o
s

1

~-005¢+ I

~0 10 L L L L
-15 -10 -5 0 5
x,/8

Fig 3 The temperature field due to the approximate plastic
work zone shown n Fig 2 for adiabatic conditions The box
indicates the region of non-zero plastic work (see Section
23) Good qualitative and quantitative agreement with the
experimental results for a =600 m/s 1s seen The predicted
temperature rise for a =900 m/s 1s also good, however, the
shape of the field does not agree with that measured when

a=900 m/s (See Fig 1)

the predicted result, 304°C occurring along the
crack line, 1s very close to that measurement The
mimimum temperature 1s 0°C occurring every-
where outside — except directly behind - the heat
source zone

The results of the numerical integration for
the M? < 1 cases are plotted i Figs 4 through 6
For small ¢ 1t can be seen in Fig 4 that there 1s a
marked dependence of the temperature field
upon M? Most notably, for M2€[05,09] a
region of temperature drop 1s seen behind the
source zone This 1s an interesting mathematical
effect, but the result 1s unrealistic since the com-
bmation of parameters in these plots, ¢ =001
and M2 €05, 09], 1s unlikely to be seen experi-
mentally As M?— 1 the temperature field be-
comes more localized near the origin and the
temperature at any given pomnt behind the heat
source zone decreases with increasing M? For
M?=( the maximum normalized temperature
normalized temperature, 6,_,,, occurs roughly at
the maximum of the heat source zone and 1s
equal to 01% of the adiabatic maximum The
mimum, naturally, 1s zero as r —» » For M?=
0 5 the maximum 1s moved forward to roughly the
location of the mimimum slope of the source zone
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Fig 4 The normalized temperature field for a propagating
source zone with ¢ =001 and M2 €[0,05,09] (see Egs
(2 22a) and (2 22b) ) Note that the existence of a temperature
drop 1s exhibited for M2 €[0 5.0 9] and that the temperature
field becomes more localized around the source zone with
increasing M2

where 6,,,, 1s equal to 1% of the adiabatic maxi-
mum The mimimum occurs roughly at the loca-
tion of the maximum slope of the source zone
where the normalized temperature 1s equal to
—1% of the maximum adiabatic temperature
For the case M>=09 the location of the maxi-
mum and minmmum is not changed with respect
to the case M>=05 but the magnitude does.
... 15 equal to 10% of the adiabatic maximum
while 8., 15 equal to —10% of the adiabatic
maximum The behavior seen for the two cases
when M2F 0 1s exactly as expected from Egs
(213) and (2 12) When M* # 0 there 1s a contri-
bution due to the slope of the heat source zone as
seen in Eq (2 13) This contribution has a cooling
effect when the slope 1s a maximum and a heat
effect when the slope 1s a minimum, as M2 — 1
the significance of the hearing and cooling due to
the modified Bessel's function of the first order
becomes greater and more dominant Thus, as
M?— 1, the maximum temperature moves to the
location of mmmimum slope and the minimum
temperature moves to the location of the maxi-
mum slope Both maximum and mmmum n-
crease 1n magnitude as M2 — 1

For larger ¢, Fig 5, the dependence of the
temperature field upon M* begins to disappear
No negative temperature changes are seen, when
M?=09 the temperature does exhibit a positive
mimmum near the tail end of the heat source
zone Thus, some cooling effects due to the sec-
ond source term 1n Eq (2 13) remain Although,
far from the heat source zone, x,/6 > 1, all three
fields are equal As M2 — 1 a locahzation of the
temperature near the source zone 1s still seen
The maximum temperature 1s located near the
maximum of the source function in each sub-case
although 1t moves forward shightly as the thermal
Mach number increases The maximum normal-
1zed temperature increases with thermal Mach
number, 8, =075, 1, 15 for M*=0,05,09,
respectively These values are 3 25%, 5% and
7 5% of the maximum temperature under adia-
batic conditions

For even larger ¢, Fig 6, the dependence
upon M ? disappears completely as expected from
the asymptotic analysis, Eq (2 29), and the hyper-
bolic heat conduction solution 1s indistinguishable
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Fig 5 The normalized temperature field for a propagating
source zone with ¢ =1 and M2 €[0,05,09] There exist no
temperature drops as for ¢ =001 in Fig 4, however, the
temperature field becomes increasingly localized around the
heat source as the thermal Mach number, M, increases lead-
g to higher temperature rises at the maximum
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Fig 6 The normalized temperature field for a propagating
source zone with ¢ =100 and M?<[0,09] The two fields
are virtually indistinguishable No dependence upon M? 1s
seen

from the solution for parabolic heat conduction
at all values of M?<1 No localization of the
temperature near the heat source zone 1s discern-
able The maximum temperature occurs shghtly
behind the maximum of the heat source zone
with a value of 75-32 5% of the maximum tem-
perature under adiabatic conditions

Small ¢ accounts for a small source zone, &,
low velocity, a, or a large thermal diffusiity, «
(see Eq (222b)) For metals these conditions do
not reflect the usual experimental conditions For
4340 steel, a = 1073, and a8 = 2 for both experi-
ments shown 1 Fig 1 giving ¢ ~ 10° m both
cases For comparison the results of the integra-
tion for = 10° have been plotted in Fig 7 It 1s
seen that the theoretical temperature field
matches the experimental results, Fig 1, well for
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a =600 m/s and that both the theoretical tem-
perature field and the experimental temperature
field resemble the adiabatic solution, Fig 3 Con-
tours extend from the heat source zone nearly
parallel to the crack faces toward x, = — be-
fore curving 1n to meet the negative x, axis The
results for ¢ = 10° differ from the adiabatic solu-
tion 1n that the temperature decreases as | x|
increases behind the heat source zone It 1s re-
iterated that this decrease 1s expected due to the
zero temperature boundary condition at x| =
o This boundary condition more closely approxi-
mates the experimental condition than an adia-
batic boundary condition because there 1s, after
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Fig 7 The theoretical temperature fields for approximate
experimental conditions when a=900 m/s and 600 m/s
Good agreement is seen 1n the predicted maximum tempera-
ture at the crack tip, however, some discrepancies occur
between the general shape of the field in this figure and the
temperature fields shown n Fig 1 (¢ =105, § =75 mm for
a=600m/s and § =5 mm for a =900 m/s)

y— 10> M*=10*
T

030F ™ T

Licosaiin

020F g
0 10f 2"\ E

~010F

x;/8

YT
' \
\N
°o
-
©
L

-020

TP

-0 30 E 1 (
~16 -10 -5 [ 5
x,/8
Fig 8 The theoretical temperature field when M*=10* and
¥ =107 resembles that n Fig 1 when a=900 m/s This
resemblance 1s coincidental, however, because the large value
of M* ndicates thermally supersonic behavior, this should
also be expected when a = 600 m/s and no such behavior 15
observed

all, a small but sigmificant amount of heat con-
duction leading to a cooling of the specimen as
|x,| = It 1s noted that the temperature de-
creases more rapidly behind the crack tip in the
experiments than in the theory This 1s attributed
to heat loss by radiation and convection at the
surface Kuang and Atluri (1985) have included
these effects in their numerical parabolic heat
conduction analysis, and they report a more rapid
decrease 1n the temperature behind the crack
than when radiation and convection are not ne-
glected For a =900 m/s in Fig 1 a discrepancy
with the theoretical results for M2 <1 1n Fig 7 1s
seen The contours seen experimentally emanate
from the source zone outwardly before curving in
to meet the negative x, axis (The predicted
maximum temperature at the crack tip 1s in good
agreement with the experimental measurement,
however, owing to the adiabatic conditions at the
crack tip )

For M? > 1 an exemplary plot is shown i Fig
8 The resemblance of this figure to the results
recorded m Fig 1 for a =900 m/s 1s striking,
however, the experimental temperature field for
a = 900 m /s shows what might be interpreted to
be thermal shocks at a shock angle corresponding
to a large Mach number, M = 100 If this value
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for M 1s accurate then when a =600 m/s the
temperature field should also show similar ther-
mal shocks, 1t does not Also, because = 10°
experimentally and not 10° as in Fig 8, the
theoretical temperature field for thermally
super-sonic crack propagation at a =900 m/s
actually resembles the temperature field in Fig 7
This 1s expected from the asymptotic analysis and
has been checked numerically by the authors
Therefore, 1t 1s clear that no evidence of ther-
mally super-somic crack propagation 1s observed
in these experiments

The difference between the experimentaily ob-
served temperature field at a = 900 m/s and the
predicted field at the same crack speed 1s due to
crack face opening (Mason and Rosakis, 1992)
The opeming velocity required to produce the
observed effect 1s 75 m/s, a reasonable crack
opening velocity It 1s expected that the crack
face opeming speed depends upon the initial static
stress intensity factor and the crack velocity From
simple theory one mught expect that the crack
face opening velocity increases by as much as 5
times when the crack speed increases from 600
m/s to 900 m/s (Freund, 1977) This suffices to
explain the difference 1n the temperature fields in
Figs 1 and 7

4. Conclusions

From the asymptotic analysis of the travelling
point source solution of the hyperbolic that con-
duction equation, 1t 1s clear that, for crack propa-
gation 1n metals when the crack speed is either
lower or higher than the material heat propaga-
tion speed, the difference between hyperbolic
heat conduction and parabolic heat conduction 1s
neghigible (see Figs 6 and 7) As the factor ¢ =
ad/2a gets large (¢ ~ 10° for a crack propagat-
ing 1n 4340), solutions for a travelling point source
i a hyperbolic or parabolic material converge to
the same result This end result 1s 1nsensitive to
changes in the thermal Mach number, M, and 1s
very similar to the solution for a travelling source
zone 1n an adiabatic matenal

The temperature field in Fig 1 exhibits quasi-
adiabatic heat conduction behavior when a = 600

m/s Contours of constant temperature extend
from the crack tip to | x,| = — nearly parallel
to the crack faces before curving in to meet the
negative x, axis A region of nearly constant
radial temperature gradient 1s observed ahead of
the crack tip The temperature field greatly re-
sembles the solution for adiabatic conditions due
to the high crack velocity, a, small heat produc-
tion zone, 8, and low thermal diffusivity, a, of
4340 steel

When a = 900 m /s the temperature field does
not show behavior that 1s predicted by parabolic
or hyperbolic heat conduction It 1s understood
that this difference 1s due to opening of the crack
faces behind the crack tip (Mason and Rosakis,
1992) Thus, no evidence of hyperbolic heat con-
duction 1s observed, and 1t 1s concluded that the
travelling point source shows little promise as an
experimental method for the investigation of the
hyperbolic heat conduction effect A feasible
source zone size combined with the normal range
of material parameters for engineering matenals
consistently leads to near adiabatic conditions
around the source zone unless a very low thermal
wave speed 1s expected (~ 1 m/s) Furthermore,
it 1s noted that hyperbolic heat conduction 1s
expected only at very low temperatures and only
for very special materials (Nemat-Nasser, 1992)
making this phenomenon even less likely to occur
under these experimental conditions
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